
Facing performance degradation when 
using mmap based applications

GPFS at EBI

Jordi Valls
Systems Infrastructure Group
jvalls@ebi.ac.uk



1. Who are EBI?

• A trusted data provider for life sciences.

• Part of the European Molecular Biology Laboratory 
(EMBL), an intergovernmental research organisation.

• International: 23 member states and 2 associate 
member states, 6 sites in Europe.

• EMBL-EBI manages a vast amount of public 
biological data, delivering it to the global life science 
community on demand, 24/7 without restriction or 
charge.

Europe’s home for biological data, research and training



2. Systems at EBI

IT services at EBI are managed by the Technical Services
Cluster (TSC)



3. Infrastructure

• Three datacentres with around 200 racks of 

equipment.

• More than 40.000 cores. Mostly ethernet based.

• Multiple HPC-like clusters (mainly blades).

• Hadoop cluster.

• Over 140 PB of raw storage capacity.

• Multiple technologies: NFS, Object Store, GPFS, Lustre

• Annual storage growth of 40-50%



4. Scenario for GPFS: EBI services



5. Scenario for GPFS: infrastructure



6. The problem: BLAST is slow

• BLAST (Basic Local Alignment Search Tools) is a 
software used to find regions of similarity between 
biological sequences.

• Developed by the NCBI and very popular in 
bioinformatics.

• Users reported running BLAST was extremely slow 
when source data was stored in GPFS.

• Some executions showed a performance 80 times 
slower compared to NFS. 



6. The problem: BLAST is slow

GPFS 16 threads 5.0.0.0 mmap
GPFS 8 threads 4.2.3.6

GPFS 8 threads 5.0.0.0

GPFS 8 threads 4.2.3.6

GPFS+LROC

GPFS 8 threads 5.0.0.0 mmap

GPFS+SmallBS

GPFS+SmallBS_E8

GPFS patched

GPFS 1 thread 4.2.3.6
GPFS + tmpfs

GPFS/o NFS

Lustre 8 threads

Lustre 1 thread

Netapp Netapp AFA

Isilon 1 thread

Isilon 8 threads

0:00.000

14:24.000

28:48.000

43:12.000

57:36.000

72:00.000

86:24.000

100:48.000

1

BLAST RUNTIME AVG. 

GPFS 16 threads 5.0.0.0 mmap GPFS 8 threads 4.2.3.6 GPFS 8 threads 5.0.0.0 GPFS 8 threads 4.2.3.6

GPFS+LROC GPFS 8 threads 5.0.0.0 mmap GPFS+SmallBS GPFS+SmallBS_E8

GPFS patched GPFS 1 thread 4.2.3.6 GPFS + tmpfs GPFS/o NFS

Lustre 8 threads Lustre 1 thread Netapp Netapp AFA

Isilon 1 thread Isilon 8 threads



7. First approaches

• Blame the users.

We tried multiples approaches without success.



7. First approaches

• x Blame the users.
• Recompile BLAST using all optimization flags.

We tried multiples approaches without success.



7. First approaches

• x Blame the users.
• x Recompile BLAST using all optimization flags.
• Install the latest version of BLAST.

We tried multiples approaches without success.



7. First approaches

• x Blame the users.

• x Recompile BLAST using all optimization flags.

• x Install the latest version of BLAST.

• Update the GPFS client to the latest available version 
(5.0.0.1).

We tried multiples approaches without success.



7. First approaches

• x Blame the users.
• x Recompile BLAST using all optimization flags.
• x Install the latest version of BLAST.
• x Update the GPFS client to the latest available 

version (5.0.0.1)
• Use NVMe, either using LROC or as a filesystem. 

(thanks Gurdip and E8).

We tried multiples approaches without success.



7. First approaches

• x Blame the users.
• x Recompile BLAST using all optimization flags.
• x Install the latest version of BLAST.
• x Update the GPFS client to the latest available 

version (5.0.0.1).
• x Use NVMe, either using LROC or as a filesystem. 

(thanks Gurdip and E8).

We tried multiples approaches without success.



8. The real evil: mmap

• Performance degradation only occurs when running 
multiple threads in the same host.

• Analizing the execution of BLAST using strace we 
realized there were thousands of mmap calls.

• Many users reporting problems with parallel 
filesystems when using mmap, including GPFS.

• mmap causes IO to fallback to the default kernel page 
size (4K) instead of using the values defined for 
GPFS.

BLAST switches to using mmap for IO when it’s executed
with more than 1 thread.



8. The real evil: mmap

=== mmdiag: iohist === 

I/O history: 

I/O start time RW Buf type disk:sectorNum nSec time ms Type Device/NSD ID NSD node 
--------------- -- ----------- ----------------- ----- ------- ---- ------------------ ---------------
16:34:53.284905 R data 2:338059951504 8 17.235 cli AC110407:586CEE7B 10.7.74.15 
16:34:53.302271 R data 2:338059912744 8 4.659 cli AC110407:586CEE7B 10.7.74.15 
16:34:53.307139 R data 1:338060022688 8 1.374 cli AC110406:586CEE77 10.7.74.14 

=== mmdiag: iohist === 

I/O history: 

I/O start time RW Buf type disk:sectorNum nSec time ms Type Device/NSD ID NSD node 
--------------- -- ----------- ----------------- ----- ------- ---- ------------------ ---------------
16:24:17.783564 R data 2:214062309376 4096 22.108 cli AC110407:586CEE7B 10.7.74.15 
16:24:17.806245 R data 1:214062120960 4096 23.263 cli AC110406:586CEE77 10.7.74.14 
16:24:17.830125 R data 1:214062116864 4096 18.072 cli AC110406:586CEE77 10.7.74.14

BLAST switches to using mmap for IO when it’s executed
with more than 1 thread.



8. The real evil: mmap

/// Set number of threads 

/// 

/// Set number of threads which will share this object. This 

/// permits use of an internal mmap for the threads. 

/// If the second parameter is 'false' (the default), 

/// the internal mmap is not used if num_threads == 1. 

/// For certain applications where there are multiple CSeqDB

/// objects, each one accessed by only a single thread, 

/// setting num_threads to 1 (thread per CSeqDB) results in 

/// a performance hit by not using the mmap. 

/// In this case, force_mt ("force multithreading") should 

/// be set to 'true' to allow use of the mmap when num_threads

/// == 1. For num_threads > 1, force_mt has no effect. 

/// 

/// @param num_threads The number of threads which will share 

/// access to this CSeqDB object. [in] 

/// @param force_mt Defaults to false, setting to true when 

/// num_threads == 1 forces multithread 

/// internal mmap. [in] 

void SetNumberOfThreads(int num_threads, bool force_mt = false);

BLAST switches to using mmap for IO when it’s executed

with more than 1 thread.

File objtools/blast/seqdb_reader/seqdbimpl.hpp



9. Next step: help IBM!

• Asked on the GPFS Users Group list

• Contacted with Sven Oehme

• Sven agreed on working on a fix for the problem

• Running BLAST with 1 thread takes too much time.

• Switching to an MPI solution was too complex.

No workaround could be provided:

So we looked for help:




