
© Copyright IBM Corporation 2017

IBM Spectrum Scale ReST API

© 2017 IBM Corporation

ReST API strategic direction

● The ReST API will be THE strategic interface for integrating with 3rd party/customer
applications, automation or monitoring.

● Long-term we aim for complete coverage of configuration (mm-commands), health
monitoring (mmhealth) and performance monitoring (Zimon).

● ReST API is meant to be scalable and support large clusters (thousands of nodes)

● It runs on a subset of nodes but is highly available (active/active configuration, no ip failover
yet, so clients have to switch to alternative ip)

● ReST calls are meant to complete within a few seconds (instead of being open-ended like
mm-CLI)

© 2017 IBM Corporation

Integration

Spectrum ScaleSpectrum Scale

Node1

Node1 Node2Node2 NodeNNodeN

GUI/ReST

Central Datacenter
Monitoring

Automated
Admistration
Workflows

Integrated
Solutions

Accounting

Fix Procedures
DMPs

Health &Performace

Filesets,
exports,
snapshots Quotas

all

© 2017 IBM Corporation

History of ReST API in Spectrum Scale

● Release 4.2.2, V1 API

– First implementation based on Python

– Deployment limited to manager nodes, RHEL 7 only

– Did not meet our expectations and so will be discontinued

● Release 4.2.3, V2 API

– New implementation based on GUI stack

– Reuses a lot of the GUI's backend infrastructure. This allows faster coverage of the config model by simultaneously
having more mature code

– Makes deployment easier since it comes with the GUI. No extra service to deploy, no limitations on what nodeclass
to deploy

– Fixes design issues with V1 API in regards of scalability (no paging, field selection, filtering) and command handling
(fully async)

– Extends on data model (NFS & Samba exports, NSDs, health)

© 2017 IBM Corporation

REST API architecture (4.2.3)

● In 4.2.3 GUI and ReST API will
be driven by the same
WebSphere server and share
the same object cache.

● Authentication is shared
between ReST API and GUI

● The limitation in 4.2.2 that ReST
API had to be deployed on
manager nodes is gone

Auth
internal/
LDAP/AD

Spectrum ScaleSpectrum Scale

Node1

Node1 Node2Node2 NodeNNodeN

GUI/ReST

© 2017 IBM Corporation

ReST API v2

© 2017 IBM Corporation

ReST API v2

© 2017 IBM Corporation

ReST API v2

© 2017 IBM Corporation

ReST API v2

© 2017 IBM Corporation

ReST API v2

© 2017 IBM Corporation

Paging

● Since a GET might query for thousands of objects we need a mechanism to avoid
responses to grow towards the gigabyte range.

● Therefore the GET will return only up to 1000 objects per single request. More objects can
be retrieved with subsequent GET requests.

● Response objects may contain an object called "paging" which contains a link which can
then be used to retrieve the next set of objects (if available), e.g.:

"paging" : {
 "next" : "/filesystems?filter=filesystemName='''gpfs.*'''&lastId=12"
}

© 2017 IBM Corporation

Fields

The "field" parameter can be used to specify the fields of the returned object by adding the query parameter "fields" to a GET
URL, e.g. "?fields=field1,field2,parentField1.field1".

There are two special field names:

● _none_: Will only return the fields needed to uniquely identify an object (eg filesystemName and filesetName for a fileset)

● _all_: Will return all fields

The default for queries that return more than one object depends on the specific endpoint. We return whatever we think are
the fields that someone would like to see in a listing. The default for queries to a single object is _all_.

To query fields that are wrapped in a parent object a "." can be used. For example to query for "iamMode" in the object below
"?fields=config.iamMode" can be used:

To query for all fields of a parent the parent name only can be used, e.g. "?fields=config,afm" will include all fields of the
parent objects "config" and "afm"

Multiple fields can be separated using ",", e.g. "?fields=config.iamMode,state.id"

Example: https://localhost:443/scalemgmt/v2/filesystems/gpfs0/filesets?
fields=status.rootInode,status.id

© 2017 IBM Corporation

Filter

The filter parameter can be used to filter the retrieved objects. For example all filesets with id<2 can be
retrieved by using "?filter=state.id<2". The fields used in the filter parameter are always added to the result set
and therefore don’t have to be specified using the "fields" mechanism. Filters can be concatenated using",".
The supported operators for different field types are as follows:

● String: "=","!=" using a regular expression as the value is supported,
e.g. "?filter=config.filesetName=' ' 'fs.*' ' '"

● If a regex is used it has to start with ' ' ' and end with ' ' '
● Numeric: "=", "!=", "<", ">" e.g. "?filter=status.id<2"
● Boolean: "=","!=" using "true" or "false" as the value, e.g. "?filter=afm.afmEnableAutoEviction=true"

Example: https://localhost:443/scalemgmt/v2/filesystems/gpfs0/filesets?
filter=status.rootInode>3

© 2017 IBM Corporation

Async execution
● The mm-command line does not provide any guarantees on command runtime. This means that basically every command might take any amount of time to complete. Even

commands like mmcrsnapshot that usually complete inside a few milliseconds may take many minutes in certain circumstances.

● Therefore in v2 all POST, PUT and DELETE request will be async. As response the client will get a job object it can query for the state of the operation

{
 "jobs" : [{
 "jobId" : 4,
 "submitted" : "2017-02-23 11.41.10"
 "completed" : "2017-02-23 11.42.08",
 "status" : "COMPLETED",
 "request" : {
 "data" : {
 "config" : {
 "path" : "/mnt/gpfs0/smbexport04",
 "shareName" : "smbexport05"
 },
 "smbOptions" : {
 "browseable" : "yes",
 "comment" : "!@#%^&*()_+~<>:\\{}[];,.?/|\\%3A0x00",
 "gpfs:sharemodes" : "no"
 }
 },
 "type" : "POST",
 "url" : "/scalemgmt/v2/smb/shares"
 },
 "result" : {
 "commands" : ["mmsmb export add 'smbexport05' '/mnt/gpfs0/smbexport04'
--option 'browseable=yes' --option 'gpfs:sharemodes=no' --option 'comment=!@#
%^&*()_+~<>:\\{}[];,.?/|\\%3A0x00' "],
 "exitCode" : 0,
 "progress" : [],
 "stderr" : [],
 "stdout" : ["info: mmsmb export add: The SMB export was created
successfully.\n"]
 },
 }],
 "status" : {
 "code" : 200,
 "message" : "The request finished successfully"
 }
}

{
 "jobs" : [{
 "jobId" : 1,
 "submitted" : "2017-02-23 11.34.29"
 "completed" : "N/A",
 "status" : "RUNNING",
 "request" : {
 "data" : {
 "config" : {
 "path" : "/mnt/gpfs0/smbexport04",
 "shareName" : "smbexport04"
 },
 "smbOptions" : {
 "browseable" : "yes",
 "comment" : "!@#%^&*()_+`~<>:\\\"{}[];',.?/|\\%3A0x00",
 "gpfs:sharemodes" : "no"
 }
 },
 "type" : "POST",
 "url" : "/scalemgmt/v2/smb/shares"
 },
 "result" : { },
 }],
 "status" : {
 "code" : 202,
 "message" : "The request was accepted for processing"
 }
}

© 2017 IBM Corporation

Roadmap

● Add ReST for Zimon data.

● Use ReST for our own GUI frontend in case of AFM

● Allow to cancel jobs (at least those in which case the mm-command supports that)

● More granular authorization (CRUD per endpoint) for REST as alternative to the current role concept

● Node management: Nodeclasses, add node, remove node

● More PUT, POST, DELETE support throughout the model

● More coverage in general with priority on new features

● Push API using WebSockets or something similar for health events, performance, config changes

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

