Active File Management (AFM)

Spectrum Scale Strategy Days 2017

Achim Christ · <u>achim.christ@de.ibm.com</u> Karl Schulz · karl.schulz@csi-online.de

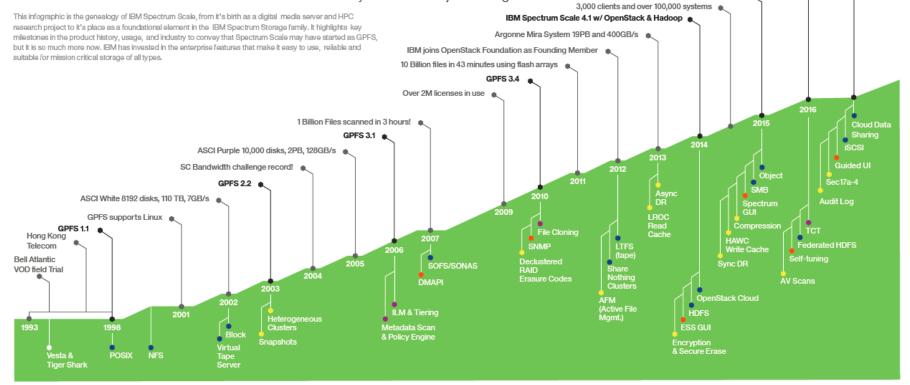
Table of contents

AFM Overview and Concepts – "Stretched" Cluster, Multi-cluster, AFM

Use Case 1: Branch office

Use Case 2: Data ingest

Use Case 3: **Disaster protection**


Use Case 4: Migration

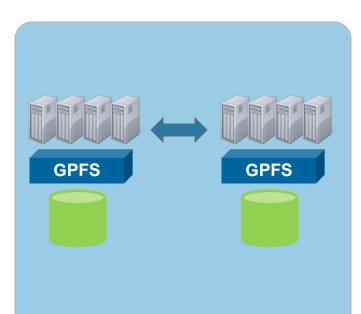
AFM Overview and Concepts

"One of the 2016 Leader in Gartner MQ for Distributed File Systems and Object Storage"*

■ UNIFIED STORAGE
■ STORAGE TIERING
● DATA MANAGEMENT
● USABILITY

* Gartner, Magic Quadrant for Distributed File Systems and Object Storage, 20 October 2016, Document No. G00307798

IBM Spectrum Scale 4.2.2 and Capacity Pricing

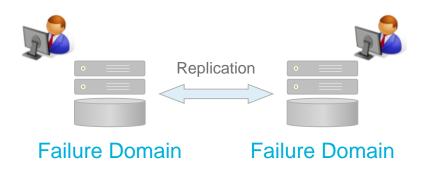

IBM Spectrum Scale 4.2.1 w/ Transparent Cloud Tiering

Spectrum Scale 4.2 w/ SWIFT & S3

Spectrum Scale evolution

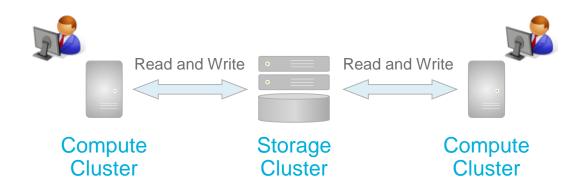
GPFS introduced concurrent file system access from multiple nodes

Multi-cluster expands the global namespace by connecting multiple sites

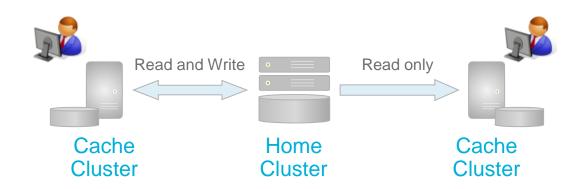


Active File Management takes global namespace truly global by automatically managing asynchronous replication of data

1993 2005 2012

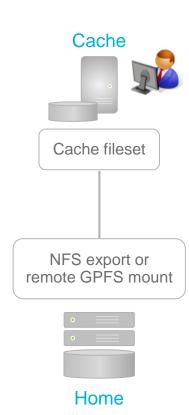

Spectrum Scale "Stretched" Cluster

- Single Spectrum Scale cluster spans sites (failure domains)
 - Single administrative domain
 - Synchronous operation, consistent locking
- Synchronous replication between sites based on NSD Failure Groups
 - Distinct Failure Groups indicate resources which could fail simultaneously
 - (Optional) replication based on different Failure Groups
 - Default replication factor for filesystem, overridden via policy
- Supports idea of high-availability
 - Failure of individual Failure Group compensated by GPFS
 - Details and recovery steps: Whitepaper | Wiki


Spectrum Scale Multi-cluster

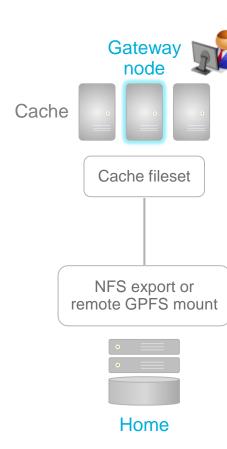
- Independent Spectrum Scale clusters
 - Separate administrative domains
 - Synchronous operation, consistent locking
- Single storage cluster owns NSDs, one or many remote clusters mount file system(s)
 - Cross-cluster mount: Knowledge Center
 - Facilitates parallelism to optimize performance
- Unavailability of storage cluster affects all remote clusters (single data copy)
- Supports idea of multi-tenancy (clusters can be authorized for individual file systems)

Spectrum Scale Active File Management (AFM)

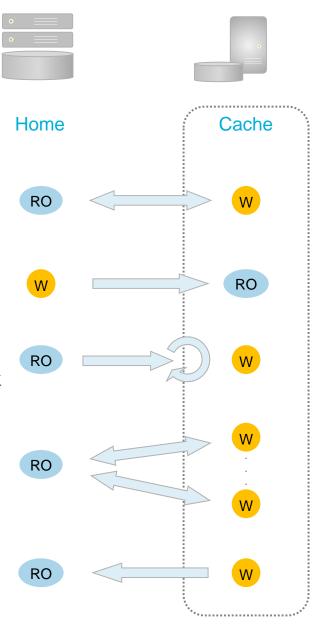


- Geographically dispersed systems share their files over WAN
 - Low bandwidth, expensive lines, temporarily unavailable, etc.
- Requirements
 - All users & applications should "see" their files stored somewhere else
 - Files should only be transferred when accessed and then cached locally
- Solution
 - Represent namespace (home) in remote system (cache) without transferring files
 - Transfer files when required and cache them, users work on local copy
 - Use parallelism to minimize transfer times
 - Asynchronous operation, no consistent locking

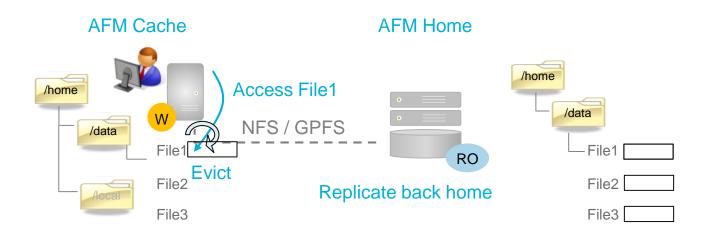
Active File Management (AFM) architecture


- AFM uses home-cache model
 - Single home provides primary storage of data which is exported
 - Exported data is cached in local GPFS file system
- Home can be NFS export or remotely mounted GPFS cluster
 - Only GPFS-based home file systems support ACLs, EA, and sparse files (irrespectively of NFS or GPFS protocol)
- GPFS cache presents home export in a fileset
 - One cache fileset can cache one home export
 - One cache server can cache multiple home exports (one fileset each)
- Different modes supported, can be combined per fileset
- AFM supported on AIX and Linux, gateway nodes must be Linux

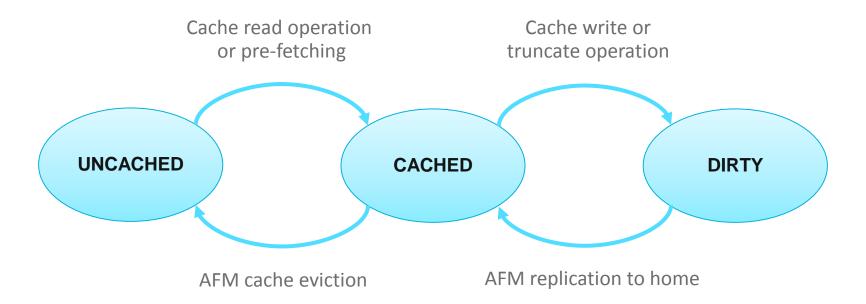
AFM gateway nodes


- Gateway node on cache manages communication with home
 - At least one GPFS cache node must be assigned as gateway node
 - Gateway node must be network connected to home server
 - Multiple gateway nodes can be used for redundancy and parallel I/O
 - Each cache fileset has gateway node (metadata server) in cache cluster
- Gateway nodes are setup during AFM configuration
 - Node role, recommendation to use dedicated resources
 - Command mmchnode --gateway
- Gateway nodes must be Linux, require server license

AFM cache modes


- Single Writer
 - Only cache can write data. Home can't change.
 Other peer caches have to be setup in RO mode
- Read Only
 - Cache can only read data, no data change allowed
- Local Updates
 - Data is cached from home like in SW mode
 - Once data is changed on cache it is not replicated back to home (stays local)
- Independent Writer
 - Multiple caches pointing to the same home
 - No file locking or write ordering from cache to home
- Primary / Secondary
 - Similar to SW, but no caching
 - All files created on primary are replicated to secondary

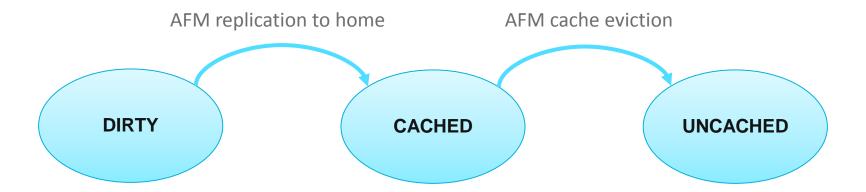
Use Case 1: Branch office


AFM caching use case (single writer)

- Requires GPFS cache system, home can be any NFS storage
 - Complex ACLs are not maintained with non-GPFS home
- File stubs (inodes) are created in cache upon AFM setup
- Data is being copied from home (fetched) upon file access in cache
 - Files can be pre-fetched based on policies to improve performance
- Changed files on cache are replicated back to home
- When file comes to rest it can be evicted from cache based on thresholds
 - File remains visible in cache but does not consume space

AFM file states in SW cache

Use Case 2: Data ingest


AFM data ingest use case (independent writer)

- Asynchronous replication between two GPFS clusters
 - Data is generated at cache site, transferred to home site
- Data is transferred to home GPFS system automatically using AFM
- Further processing of data on home system
 - Workflow prevents write conflicts for files
 - Data not modified on cache after creation
 - Centralized analysis, indexing, backup, etc. on home
- Cache eviction frees up storage on cache system for new data

AFM file states in IW cache

Use Case 3: Disaster protection

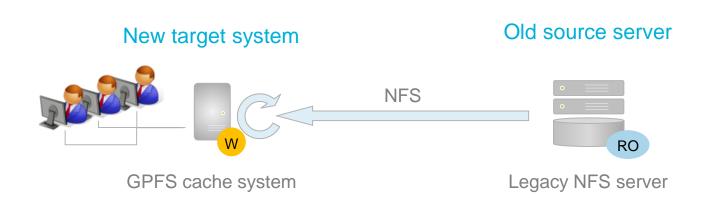
AFM Disaster Recovery (primary, secondary)

- Asynchronous replication between two GPFS clusters
 - Cache site is primary and is used for I/O, home site is secondary
 - Peer snapshots are used to provide Recovery Point Objective (RPO)
- When primary is down secondary can be made new primary during failover
- When old primary is back online it can be made primary again during failback
 - Requires delta to be copied from home to cache
- New secondary can be defined if old secondary fails

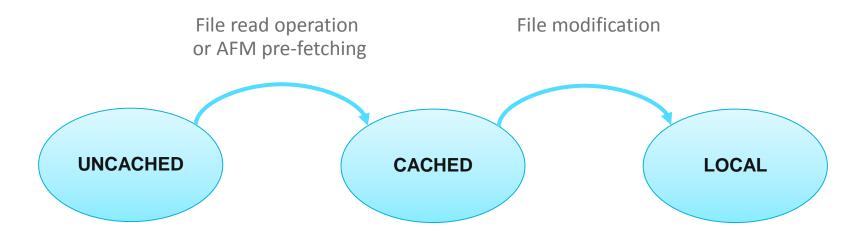
Primary GPFS cluster

Secondary GPFS cluster

AFM file states in DR primary



Use Case 4: Migration


AFM migration use case (local update)

- Migrate files from old NFS server to new GPFS system
- Cache system "sees" all files from old NFS server after establishing AFM relationship
 - Cache is configured in LU mode
 - Home provides NFS export(s)
 - Files can be pre-fetched (migrated) based on results of policy scans
- Switch over when sufficient files are pre-fetched
 - Uncached files accessed on cache are transferred from home
 - Files changed on cache are not replicated back

AFM file states in LU cache

Active File Management (AFM)

Spectrum Scale Strategy Days 2017

Achim Christ · <u>achim.christ@de.ibm.com</u> Karl Schulz · karl.schulz@csi-online.de

Kernkompetenzen

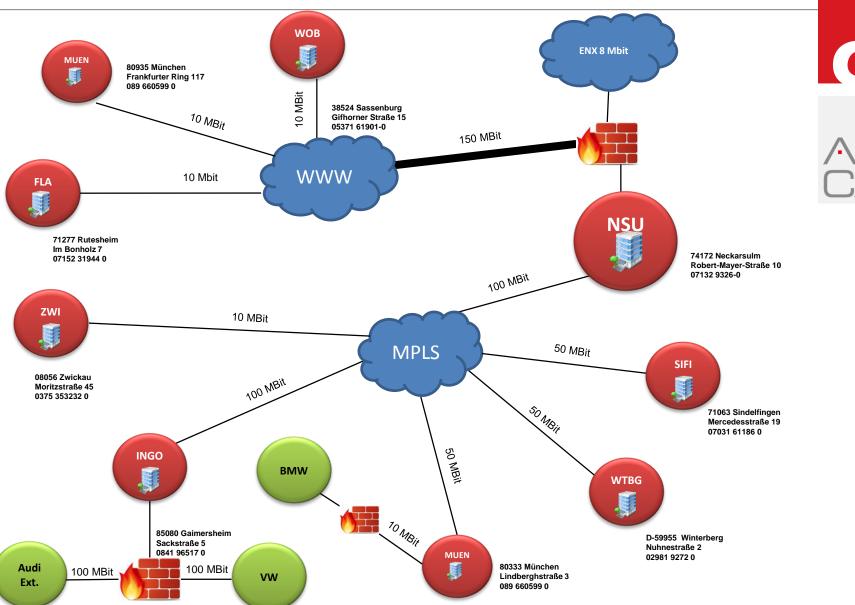
Interieur Exterieur Grauzone Poly-Modeling

Karosserie

Leichtbau Fügetechnik Karosseriearchitektur Multimaterialbauweise Simulation

Interieur

Fahrzeugsicherheit Industrialisierung Emotionen Leichtbau Simulation


Exterieur

Fahrzeugsicherheit Leichtbau Material Kinematik Simulation

- Innovationsstudio csi akademie
- Design ThinkingTechnisches Consulting
 - Prozessoptimierung Benchmarkhalle
- Toolentwicklung Methodenentwicklung

Netzplan - csi Gruppe

- Spectrum Scale seit 2010
- Linux HSM / Spectrum Protect
- Filesystemgröße 6 TB 800 TB
- Clients per SMB / NFS
- File-basierte Arbeitsweise
- -> Catia, Icem, Pamcrash, Moldflow, MS Office...

Herausforderung:

Verbesserung der Zusammenarbeit zwischen den Standorten

- AFM seit Juni 2016 produktiv
- Multiple Writer Modus
- Cache Parameter je Fileset justierbar
- Beliebige Filesets zwischen den Standorten

Alternativen?

. . .