
Spectrum Scale User Group

Object

24.02.2016 Oxford

Content provided by: Dean Hildebrand, Bill Owen, Brian Nelson,
Sandeep Ramesh, Smita Raut, Deepak Ghuge, Simon Lorenz,
Nilesh Bhosale, Joe Dain, and many more...

Object Topics

● 4.2.0.x and Road map

● Storage Policies

● Architecture

● Container content -

● compressed (4.2)

● encrypted (4.2.1)

● secure deleted (future)

● expired (future)

- via swift storage policies

● Unified File and Object Access

● Multi-Region

● Swift3

● Object Meta Data search

● Implementation Guide with Spectrum Scale Object and

Spectrum Archive (LTFS)

● Spectrum Scale facts

4.2.0.x and Road Map

4.2.0.x and Road Map

4.2.0.x and Road Map

Disclaimer:

IBM’s statements regarding its plans, directions, and intent are subject to change or

withdrawal without notice at IBM’s sole discretion. Information regarding potential

future products is intended to outline our general product direction and it should not be

relied on in making a purchasing decision. The information mentioned regarding

potential future products is not a commitment, promise, or legal obligation to deliver

any material, code or functionality. Information about potential future products may not

be incorporated into any contract. The development, release, and timing of any future

features or functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance that

any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream, the

I/O configuration, the storage configuration, and the workload processed. Therefore,

no assurance can be given that an individual user will achieve results similar to those

stated here.

4.2.0.x and Road Map

4.2.0.x Items:

• Enhanced swift storage policies to provide compression, multi-region and

swiftonfile functionality

• Additional capabilities (SoF, Storage policy extensions, multi-region, …) and the

needed services (including monitoring) can be enabled easily in config

• Unified File (POSIX, SMB, NFS) and Object (Swift, S3) access

• SoF Handle new empty containers via middleware dir_create

• Multi-region active-active object store with manual coordination between regions

• AFM-DR Support

• Running Keystone in Apache httpd server

• Redpaper Active Archive Implementation Guide with Spectrum Scale Object and

Spectrum Archive (LTFS)

4.2.0.x and Road Map

Future:

• Spectrum Scale Encryption as a swift storage policy (4.2.1)

• Object meta data search (Paper describing setup in 4.2.1, integration into

Spectrum Scale planned for 4.2.2)

• REST-API (GPFS Management) (Initial version with fileset management planned

for 4.2.2)

• Spectrum Scale secure delete of containers linked to an encrypted swift storage

policy (4.2.2)

• Billing and charge back data collection and interface (4.2.2+)

• Multiple Authentication (Keystone) domains (4.2.2)

• S3 improvements (Lifecycle policies, versioning) (4.2.2, depending on community

progress)

• GPFS QoSIO integration for bkgrnd Swift tasks and between tenants (4.2.2)

Your feedback, what’s important for you?

Storage Policies

Storage Policies

Architecture

Objects:

- compressed (4.2)

- encrypted (4.2.1)

- secure deleted (future)

- expired (future)

Storage Policies – Architecture

Object Setup on Spectrum Scale

Object Directory Structure:

Base path („/srv/node“) is defined in object-server.conf and is valid for the object

server instance.

Means: What ever is stored in the object store, it will be placed under this path.

We do use an independent fileset in the base path.

A fileset assigns a unique identifier to the entire object store, allowing

Information Lifecycle Management operations, such as snapshots, tiering,

backup, and user policies, to operate on the entire object store.

Devices for the rings are drives in community swift, but in our case we create

directories for it.

Storage Policies – Architecture

Swift Ring Files

Account 1

Container 1

Container 2

Container …

Obj 1 Obj 2 Obj …

Obj 1 Obj …

Swift Storage Policy 1

Cont

Ring defines i.e.:
• How many replicas
• Where to store
• How to store

Acc

Obj

Swift Storage Policy 2

Obj

Swift Storage Policy 3

Obj

Obj
Rings:

Storage Policies – Architecture

Swift Ring Files

Container 1
Swift Storage Policy 1

Obj
Container 2

Container 3
Container ...

Diskfile
actual impl.
on how the obj
is handled on
disk

Container 1
Swift Storage Policy 2

Obj
Container 2

Container ...

Diskfile
actual impl.
on how the obj
is handled on
disk

Container 1
Swift Storage Policy 3

Obj
Container 2

Container 3
Container ...

Cust. Diskfile
Own impl.
on how the obj
is handled on
disk

x ... 1

x ... 1

x ... 1

1 ... 1

1 ... 1

1 ... 1

Storage Policies – Architecture

Spectrum Scale Extensions

Every new storage policy will be linked to it‘s own independent Fileset.

This will allow us to run ILM features / storage policy

<base path> <storage policy fileset> <device folders>

<fs><fset> <storage policy 1 fset> <device 1>

<device 2>

<device …>

<fs><fset> <storage policy 2 fset> <device 1>

<device 2>

<device …>

How can we accomplish this? … as there is no Swift functionality like this

Storage Policies – Architecture

Spectrum Scale Extensions

Every new storage policy will be linked to it‘s own independent Fileset.

<base path> <storage policy fileset> <device folders>

<fs><fset> <storage policy 1 fset><device 1>

<device 2>

<device …>

<fs><fset> <storage policy 2 fset><device 1>

<device 2>

<device …>

Example:

/mnt/gpfs0/object_fileset /storagepolicy1 /device1/
/device2/
/device…/

/mnt/gpfs0/object_fileset /storagepolicy2 /device1/
/device2/
/device…/

How can we accomplish this? … as there is no Swift functionality like this

Storage Policies – Architecture

Spectrum Scale Extensions

Make the device folder a soft link to the fileset that is used for the storage policy

/mnt/gpfs0/object_fileset/sp2device1 links to:

/mnt/gpfs0/object_fileset/sp2/sp2device1

Example:

pwd

/mnt/gpfs0/object_fileset

ll

total 0

drwxr-xr-x 15 swift swift 4096 Jul 2 06:15 sp1

drwxr-xr-x 12 root root 4096 Jul 2 07:28 sp2

lrwxrwxrwx 1 root root 44 Jul 2 07:26 sp2device1 -> mnt/gpfs0/object_fileset/sp2/sp2device1

lrwxrwxrwx 1 root root 44 Jul 2 07:26 sp2device2 -> /mnt/gpfs0/object_fileset/sp2/sp2device2

lrwxrwxrwx 1 root root 44 Jul 2 07:26 sp2device3 -> /mnt/gpfs0/object_fileset/sp2/sp2device3

…

Storage Policies – Objects compressed 4.2

• Spectrum Scale Compression functionality is used

Example:

Create a compression storage policy as follows

mmobj policy create CompressionTest --enable-compression --compression-schedule

“600:*:*:*"

The system displays output similar to the following:

[I] Getting latest configuration from ccr

[I] Creating fileset /dev/gpfs0:obj_CompressionTest

[I] Creating new unique index and building the object rings

[I] Updating the configuration

[I] Uploading the changed configuration

Every object stored using a storage policy that has compression enabled is compressed according

to the specified schedule.

There is no need to uncompress an object in advance of a get request or any other object request.

IBM Spectrum Scale™ automatically returns the uncompressed object.

Note: The download performance of objects in a compressed container is reduced compared to the

download performance of objects in a non-compressed container.

Use mmlsattr –L <file> to display if it’s compressed.

A spectrum scale policy list run checking for attribute K can be used too.

Storage Policies – Objects encrypted 4.2.1

• Spectrum Scale Encryption functionality is used

Example:

Create an encrypted storage policy as follows

mmobj policy create EncryptionTest --enable-encryption --encryption-keyfile

/tmp/key.file

The system displays output similar to the following:

[I] Getting latest configuration from ccr

[I] Creating fileset /dev/gpfs0:obj_EncryptionTest

[I] Creating new unique index and building the object rings

[I] Updating the configuration

[I] Uploading the changed configuration

Note: GPFS encryption is only available with IBM Spectrum Scale™ Advanced Edition.

The file system must be at the latest version for GPFS 4.1.

Secure storage uses encryption to make data unreadable to anyone who does not possess the necessary

encryption keys. The data is encrypted while "at rest" (on disk) and is decrypted on the way to the reader. Only data,

not metadata, is encrypted.

A Key Manager Server must be installed and configured before encryption functionality can be used.

The server that is supported is IBM® Security Key Lifecycle Manager (ISKLM) v2.5.0.1 or later.

Storage Policies – Objects secure deleted (future)

• Spectrum Scale Encryption functionality is used

• Secure deletion refers to both erasing files from the file system and erasing the

MEKs (master encryption key) that wrapped the FEKs (file encryption key) that

were used to encrypt the files.

Basically the origin keys are exchanged with new keys to ensure, any file recovery

will have no key to decrypt the file.

• We are looking at securely deleting the encrypted fileset via commands that ease

the process.

Means secure delete of multiple containers linked to an encrypted swift storage

policy.

Storage Policies – Objects expired (future)

• Swift has expiration settings which can be set via

X-Delete-At or X-Delete-After on object basis.

• We plan on doing expiration via storage policy, setting the policy to expire at

and/or after.

• Taking care of expiration via Spectrum Scale policies

Unified File and Object Access

Unified File and Object Access

Unified File and Object Access

● Accessing object using file interfaces (SMB/NFS/POSIX) and accessing file using

object interfaces (REST) helps legacy applications designed for file to seamlessly

start integrating into the object world.

● It allows cloud data which is in form of objects to be accessed using files using

application designed to process files.

● Multi protocol access for file and object in the same namespace allows supporting

and hosting data oceans of different types with multiple access options.

● There is a rich set of placement policies for files (using mmapplypolicy) available

with IBM Spectrum Scale™. With unified file and object access, those placement

policies can be leveraged for object data.

● To analyse large amounts of data, advanced analytics systems are used.

However, porting the data from an object store to a distributed file system that the

analytics system requires is complex and time intensive. For these scenarios, there

is a need to access the object data using file interface so that analytics systems

can use it. Unified File and Object Access value adds in this scenario.

● Availability of spectrum Scale Hadoop Connectors over Unified File and Object

access

Filesystem Layout

(Traditional Vs Unified File and Object Access)
● One of the key advantages of unified file and object access is the placement and

naming of objects when stored on the file system. In unified file and object access

stores objects following the same path hierarchy as the object's URL.

● In contrast, the default object implementation stores the object following the

mapping given by the ring, and its final file path cannot be determined by the user

easily.

ibm/gpfs0/

Object ingest

object_fileset/

o/z1device108/objects/7551/125

75fc66179f12dc513580a239e92c3125

a.jpg

Object ingest

ibm/gpfs0/

<Sof_policy_fileset>/<device>/

AUTH_acctID/cont/

a.jpg

Traditional SWIFT Unified File and Object Access

Ingest object URL: https://swift.example.com/v1/acct/cont/a.jpga.jpg

Easy Access Of Objects as Files via supported

File Interfaces (NFS/SMB/POSIX)
● Objects ingested are available immediately for File access via the 3 supported file

protocols.

● ID management modes (explained later) gives flexibility of assigning/retaining of

owners, generally required by file protocols.

● Object authorization semantics are used during object access and file

authorization semantics are used during object access of the same data – thus

ensuring compatibility of object and file applications

<Spectrum Scale Filesystem>

<SOF_Fileset>/<Device>

NFS/SMB/POSIXObject

(http)
2

1

<AUTH_account_ID>

<Container>

File Exports created on container

level

OR

POSIX access from container level

Objects accessed as Files
Data ingested as

Objects

Objectization – Making Files as Objects

(Accessing File via Object interface)
● Spectrum Scale 4.2 features with a system service called ibmobjectizer

responsible for objectization.

● Objectization is a process that converts files ingested from the file interface on

unified file and access enabled container path to be available from the object

interface.

● When new files are added from the file interface, they need to be visible to the

Swift database to show correct container listing and container or account statistics.

Spectrum Scale Filesystem

Unified File and Object

Fileset

NFS/SMB/POSIXObject

(http)

ibmobjectizer

objectization

1

2

3 Data ingested as Files

Files accessed as

Objects

Use case – Enabling “In-Place” analytics for

Object data repository

Spectrum Scale

<SOF_Fileset>/<Device>

Object

(http)

Data ingested

as Objects

Spectrum Scale

Hadoop

Connectors

In-Place Analytics

Source:https://aws.amazon.com/elasticmapreduce/

Traditional object store – Data to be copied from

object store to dedicated cluster , do the analysis

and copy the result back to object store for

publishing

Spectrum Scale object store with Unified File and Object Access –

Object Data available as File on the same fileset . Spectrum Scale Hadoop

connectors allow the data to be directly leveraged for analytics.

No data movement / In-Place immediate data analytics.

Analytics on Spectrum Scale Object Store With

Unified File and Object AccessAnalytics on Traditional Object Store

Explicit Data movement

Results

Published as

Objects with

no data

movement

Results returned

in place

Policy Integration for Flexibility

This feature is specifically made available as an “object storage policy” as it gives the

following advantages:

● Flexibility for administrator to manage unified file and object access separately

● Allows to coexists with traditional object and other policies

● Create multiple unified file and object access policies which can vary based on

underlying storage

● Since policies are applicable per container , it gives end user the flexibility to create

certain containers with Unified File and Object Access policy and certain without it.

● Example: mmobj policy create SwiftOnFileFS --enable-file-access

Unified Identity Between Object and File

• Common set of Object and File users using same directory service (AD+RFC 2307

or LDAP)

• Objects created using Swift API owned by the user performing the Object

operation (PUT)
Note that if object already exists, existing ownership of object will be retained

• Retaining file ACL on PUT/POST
If an object update is performed then existing “file ACL” will be retained

• For initial PUT operation of an object over a nested directory

Object does not set ACLs on nested directories

File
Authentication

Object Access File Access

SwiftOnFile
device

Object
Authentication

via keystone

POSIX

NFS / CIFS

Common AD/LDAP

IBM Spectrum Scale

Accessing Objects via File WITH Ownership

Architecture

IBM Spectrum Scale (GPFS Filesystem)

Traditional Swift Fileset Swift-on-File Fileset

Object rings

PUT
operation

Proxy Server

Storage Policy

Obj1.ring

Object-1 Server

Object

PUT

Object
COMMIT
success

1. Obtain current user
2. Perform chown operation using obtained

user

Object Server

$ stat...../sof/container1/obj1

#owner:bob

#group:bob

$ stat /objects/c24/18.72.data

#owner:swift

#group:swift

Bob

Elevated “swift” user permissions

IBM Spectrum Scale

Obj.ring

wsgi request to object server

contains parameter

HTTP_X_USER_NAME.

Using getpwnam call to fetch

UID and GID info which is

used with chown.

Flexible Identity Management Modes

● Support’s Two Identity Management Modes

● Administrators can choose based on their need and use-case using CLI

Local_Mode Unified_Mode

Identity Management Modes

Object created by Object interface

will be owned by internal “swift” user

Application processing the object data

from file interface will need the required

file ACL to access the data.

Object authentication setup is

independent of File

Authentication setup

Object created from Object interface should be
owned by the user doing the Object PUT
(i.e FILE will be owned by UID/GID of the user)

Users from Object and File are expected to be

common auth and coming from same directory

service (only AD+RFC 2307 or LDAP)

Owner of the object will own and have

access to the data from file interface.

Suitable for unified file and object access for end

users. Leverage common ILM policies for file

and object data based on data ownership

Suitable when auth schemes for file and

object are different and unified access is for

applications

#mmobj config change

--ccrfile object-server-sof.conf

--section DEFAULT --property id_mgmt

--value unified_mode | local_mode

Key Components

Component & CLI Associated Configuration File Remark

Unified File and Object
Access Object server
and Diskfile

object-server-sof.conf Object server for unified file and object access is a separate process
(/usr/bin/swift-object-server-sof) which runs on all the protocol nodes.

Objectizer Service spectrum-scale-objectizer.conf & spectrum-
scale-object.conf

“ibmobjectizer“ runs as a singleton service, on the singleton node. To
identify the node on which the ibmobjectizer service is running, use
the mmces service list --verbose command.

“dir_create”
proxy middleware

proxy-server.conf A proxy-server middleware used by unified file and object feature to
create empty directories when empty container is created.

“sof_constraints”
proxy middleware

proxy-server.conf A proxy-server middleware used by unified file and object feature to
detect potential filesystem directory/file creation failures at the proxy
server level and fail the request with a "400 Bad Request" response.

“mmobj file-access”
CLI

spectrum-scale-objectizer.conf & spectrum-
scale-object.conf

Regular objectization CLI which allows objectization of a file to object
more or less immediately. Uses common code from objectizer.

mmobj policy create
<policy name> --enable-
file-access

spectrum-scale-object.conf, swift.conf Allows to create unified file and object policies.
To read and understand on SWIFT object policy refer to :
http://docs.openstack.org/developer/swift/overview_policies.html

Simple 5 Steps for Configuration And Usage

Install IBM Spectrum Scale for

object storage with planned

authentication scheme for file

and object

Create a unified file and object

access storage policy

Create containers with the

unified file and object access

storage policy

Create exports on containers

associated with unified file and

object

access storage policy

Enable the file-access object

capability

- ibmobjectizer is started

- id_mgmt = local_mode in

object-server-sof.conf

- objectization_interval = 1800 in

spectrum-scale-objectizer.conf

Plan to use

unified_mode

of identity

management?

Set id_mgmt to

unified_mode in

object-server-

sof.conf

Yes

No

Set ad_domain

in object-

server-sof.conf

File I/O

Object I/O

Change

objectization_interval

obj auth

configured

with AD?

No

Step 1

Step 2

Step 3

Step 4

Step 5

Yes

Unified File and Object Access

Execution Example
1. Enabling the file-access object capability as follows.

mmobj config change --ccrfile spectrum-scale-object.conf --section capabilities --

property file-access-enabled --value true

2. [Optional – Based on Usecase and Workload] Set up the objectizer service interval as follows.

mmobj config change --ccrfile spectrum-scale-objectizer.conf --section DEFAULT --

property objectization_interval --value 600

3. [Optional – Based on Usecase] Change the identity management mode to unified_mode as follows.

mmobj config change --ccrfile object-server-sof.conf --section DEFAULT --property

id_mgmt --value unified_mode

4. Create a unified file and object access storage policy as follows.

mmobj policy create SwiftOnFileFS --enable-file-access

The system displays output similar to the following:

[I] Getting latest configuration from ccr

[I] Creating fileset /dev/cesSharedRoot:obj_SwiftOnFileFS

[I] Creating new unique index and building the object rings

[I] Updating the configuration

[I] Uploading the changed configuration

This command also creates a unified file and object access enabled fileset which is shown in the command output.

Make a note of that fileset (marked in blue above).

Unified File and Object Access

Execution Example (cont. 1)
5. Create a base container with a unified file and object access storage policy as follows (assuming you have valid

tokens)

swift post unified_access -H "X-Storage-Policy: SwiftOnFileFS“

Note: This will create a container called “unified_access” resulting into an directory “unified_access” on the

filesystem under the appropriate fileset associated with “SwiftOnFileFS” storage policy.

6. Store the path created for the container by finding it in the newly created fileset as follows.

export FILE_EXPORT_PATH=`find /ibm/cesSharedRoot/obj_SwiftOnFileFS/ -name

"unified_access"`

echo $FILE_EXPORT_PATH

/ibm/cesSharedRoot/obj_SwiftOnFileFS/s18401510110z1device1/AUTH_c653056149d34f46bdfe

5b74f9fa2c07/unified_access

Note: It is highly recommended to create the File exports on the container level and not above it, as shown above.

7. Create an SMB export on the path as follows.

mmsmb export add unified_access $FILE_EXPORT_PATH

The system displays output similar to the following:

mmsmb export add: The SMB export was created successfully

8. Create an NFS export on the path.

mmnfs export add $FILE_EXPORT_PATH --client

"*(Access_Type=RW,Squash=no_root_squash,SecType=sys)"

Unified File and Object Access

Execution Example (cont. 2)
9. Check the NFS and SMB exports.

mmnfs export list

Path Delegations Clients

--

--

/ibm/cesSharedRoot/obj_SwiftOnFileFS/s18401510110z1device1/AUTH_c653056149d34f46bdfe5b74f9fa

2c07/unified_access none *

mmsmb export list

export path guest ok smb encrypt

unified_access

/ibm/cesSharedRoot/obj_SwiftOnFileFS/s18401510110z1device1/AUTH_c653056149d34f46bdfe5b74f9fa

2c07/unified_access no auto

Information:

The following options are not displayed because they do not contain a value:

"browseable“

10. Create a File from NFS client where you have mounted the export as follows.

touch /mnt/mounted_export_from_spectrum_scale/samplefile.txt

11. Objectize that file immediately by using the following command or wait for the objectization cycle to

Complete so that it can be accessed from Object Interface.

mmobj file-access --object-path \

/ibm/cesSharedRoot/obj_SwiftOnFileFS/s18401510110z1device1/AUTH_c653056149d34f46

bdfe5b74f9fa2c07/unified_access samplefile.txt

Unified File and Object Access

Execution Example (cont. 3)

12. Download that object using the Swift client which is configured with required env variables.

swift download container1/samplefile.txt

13. List the contents of the container using the Swift client which is configured with all variables as follows.

swift list container1

Unified File and Object Access –

Authentication support matrix 4.2.0.1

Multi-Region

Multi-Region

Multi-Region

Active-Active Multi-Site Storage Cloud

Global Distribution

Ingest and Access from Any

Data Center

Multi-Site Availability

Objects Replicated Across 2

or more Sites

Flexible

Async or Sync Replication

Multi-Region

Architecture Details

● Provides Disaster Recovery of data center failures in a

Active-Active storage cloud

● Binds separate Spectrum Scale clusters into a

practically limitless capacity storage cloud

● Objects are stored in one or more regions depending on

- Required performance

● Number of data copies can be 1, 2, or 3

- Required number of supported data center failures

● Currently tested limit is up to 3 sites

● Objects accessible from ANY site

- If object not local, system retrieves it from
remote region

● Supports asynchronous or synchronous

replication

● Always returns latest copy across all sites

● Working on supporting WAN-acceleration

technologies for replication such as Aspera or

TransferSoft

Note: that this feature leverages Swift replication and is currently
only supported for Object data-access

Region A

Region C

Region B

Data Center 1

Data Center 2

Data Center 3

Multi-Region

Execution Example
● To set up an initial multi-region environment, issue the following command on the 1st

cluster after it has been installed:

mmobj multiregion enable

● Use the following steps to add a region in a multi-region object deployment environment.

In the command examples in the following steps, europe is the 1st region and asia is the 2nd region.

1. Export the 1st region’s information to a file using the mmobj multiregion export command.

[europe]# mmobj multiregion export --region-file /tmp/multiregion_europe.dat

2. Copy that file manually to the 2nd region.

[europe]# scp /tmp/multiregion_europe.dat asia:/tmp

3. From the 2nd region, join the multi-region environment as follows:
Use the file generated in the 1st region while deploying object on the 2nd region using the mmobj swift base

command.

[asia]# mmobj swift base ... --join-region-file /tmp/multiregion_europe.dat \

--region-number 2 --configure-remote-keystone

This step installs the object protocol in the 2nd region and joins the 1st region. Additional devices are added to

the primary ring files for this region.

4. Export the 2nd region’s ring file data.

[asia]# mmobj multiregion export --region-file /tmp/multiregion_asia.dat

Multi-Region

Execution Example (cont. 1)
5. Copy that file manually to the 1st region.

[europe]# mmobj multiregion export --region-file /tmp/multiregion_europe.dat

6. In the 1st region, update local ring files with 2nd region’s configuration.

[europe]# mmobj multiregion import --region-file /tmp/multiregion_asia.dat

This step reads in the ring files which are updated with 2nd region’s information. This update ensures that the

2nd region’s data contains a new region and therefore replaces the associated ring files in the 1st region with

the ones from the 2nd region.

Note:

Now the two clusters have been synced together and can be used as a multi-region cluster. Objects can be

uploaded and downloaded from either region. If the installation of the 2nd region specified the --configure-

remote-keystone flag, a region-specific endpoint for the object-store service for the 2nd region is created in

Keystone.

The regions need to be synced in the future any time region-related information changes. This includes

changes in the set of CES IP addresses (added or removed) or if storage policies were created or deleted

within a region. Changes that affect the swift.conf file or ring files need to be synced to all regions. For example,

adding additional CES addresses to a region causes the ring files to be rebuilt.

7. In the 2nd region, add CES addresses and update other clusters.

[asia]# mmces address add --ces-ip asia9

This steps adds an address to the CES IP pool. This also triggers a ring rebuild which changes the IP-to-device

mapping in the ring files.

Multi-Region

Execution Example (cont. 2)
8. Export the ring data so the other clusters in the region can be updated with the new IPs from the 2nd region.

[asia]# mmobj multiregion export --region-file /tmp/multiregion_asia.dat

9. Copy that file manually to the 1st region.

[asia]# scp /tmp/multiregion_asia.dat europe:/tmp

10. In the 1st region, update with changes for new 2nd region address in the ring.

[europe]# mmobj multiregion import --region-file /tmp/multiregion_asia.dat

This step imports the changes from the 2nd region. When this is complete, a checksum is displayed which can

be used to determine when regions are synced together. By comparing it to the one printed when the region

data was exported, you can determine that the regions are synced when they match. In some cases, the

checksums do not match after import. This is typically due to some local configuration changes on this cluster

which are not yet synced to the other regions. If the checksums do not match, then this region's configuration
needs to be exported and imported into the other region to sync them.

Swift3

Swift3

Swift3

Swift-proxy

OpenStack Swift API client / Swift3 (S3) API client

Account

OpenStack Identity Service

Container Object

Account
DB

Container
DB

Object
Store

OpenStack

Object API

HTTP(S)

OpenStack

Identity API

OpenStack Dashboard

Provides authentication for users of

the Cloud Operating System

WSGI Middleware

Pipeline – Swift3

• S3 emulation via Swift3 Proxy middleware

Swift3

Validating the API

• Running capability tests

ceph-s3 tests: Open source compatibility tests for S3 clones

• Approximately 350 tests

• Swift3 v1.9 passes approx 75% of tests

• Working with Community on Livecycle policies, versioning

Swift3 Experience? What’s missing from your view?

Object Meta Data search

Object Meta Data search

Object Meta Data search

Why Valuable?

• Find needles in unstructured haystacks

• Help users and administrators perform Data

Analytics

• Metadata can be on highest tier (SSD) while data

resides on lower tier (Disk/Tape)

45

General Use Cases

• Data Mining

• Data Warehousing

• Selective data retrieval, data backup, data

archival, data migration

• Management/Reporting

Object Meta Data search

Example

Consider a Photo sharing application named 'MyPhotoSpace', storing the data in an

object store in the backend, where an user has uploaded photos and added tags such

as :

Now, with metadata search, the user can search his album for various purposes:

Case 1: GET /MyPhotoSpace?query=time=day

Case 2: GET /MyPhotoSpace?query=country='USA' AND time='night'

Object Meta Data search

How it is implemented ?

• OpenStack Swift Middleware

• Indexer middleware – intercepts the object create/update/delete requests, updates
metadata index

• Search middleware – intercepts the object retrieval (GET) requests, returns objects
matching the search criteria

• Uses open source RabbitMQ for async processing of indexing requests

• Uses open source Elastic Search engine (NoSQL DB) for indexing

• Can support other NoSQL systems as well

• Complex searches with multiple criteria possible

• Support for metadata data type mappings

Object Meta Data search

How it is implemented ?

Object Meta Data search

Metadata Search API Syntax Details (future)

• HTTP Method: GET

• URI: /v1/<account>[/<container>[/<object>]] ?

[&query=<query expr1>[%20AND%20<query expr2>][%20AND%20…]]

[&format=json|xml|plain]

[&type=container|object]

[&sort=<query attr> asc|desc [,<query attr> asc|desc]*]

[&start=<int>]

[&limit=<int>]

[&recursive= True | False]

[&sys.container=<container_name>]

[&sys.object=<object_name>]

[&sys.name=<object_name|container_name>]

[&sys.content_type=<content_type>]

[&sys.last_modified[=|>|<|>=|<=]<last_modified_date>]

• Headers:

• X-Context : search

• X-Auth-Token: <valid-authentication-token>

Implementation Guide with Spectrum Scale

Object and Spectrum Archive (LTFS)

Implementation Guide with

Spectrum Scale Object and

Spectrum Archive (LTFS)

Storing objects in the

Spectrum Archive tape tier

2 main methods to leverage the Spectrum Archive tape tier in the Spectrum Scale

object store:

• 1. Application or end user explicitly copy data to specific S3 buckets and

containers where the S3 buckets and Swift containers leverage Spectrum Scale

object storage policies that immediately migrate the entire content of the buckets

and containers to tape.

This may be useful in creating a global archive for an entire data center where the

Spectrum Scale and Spectrum Archive object store is primarily targeted towards

cold data that will be immediately put on tape. The data put into the S3 buckets

and Swift containers is not actively accessed and is not treated as an active

resource.

The main advantage of this method is that fine grain control of the migration of

data on S3 bucket and Swift container boundaries is provided.

The main trade-off is that data must be explicitly copied into the S3 buckets and

Swift containers that immediately move the content to tape, which requires end

user or application awareness of the tape tier.

Storing objects in the

Spectrum Archive tape tier

Storing objects in the

Spectrum Archive tape tier

• 2. Create an online active archive that provides a single namespace to contain

warm and cold data.

Data can be migrated to tape in a selective, automated, and sweeping manner

across all buckets and containers without application awareness. In this scenario,

some of the data S3 buckets and Swift containers may reside on disk while some

of the older data in the S3 buckets and Swift containers may reside on tape.

The main advantage to this method is that no data copy or movement by the end

user or application is needed.

The main trade-off is that there is no S3 bucket or Swift container boundary to

control the movement of data to the tape tier, making it more difficult to determine

which objects reside on tape and must first be recalled in order to avoid

application time-outs.

Storing objects in the

Spectrum Archive tape tier

Spectrum Scale facts

Spectrum Scale facts

Spectrum Scale facts

● 1000's of production systems

● Systems in production with 30+ PB capacity

● Several production clusters with >10k+ nodes

● Customers with more than >10 Billion files in a single system

● >400 GB/sec throughput to single system

Currently building 1TB/s production system with 120PB capacity

The Vision:

One solution for all of your data needs

Cloud Tier
• IBM Cloud
• Amazon S3
• MS Azure
• Private Cloud

Analytics MediaFile Storage Data Ingest

Flash
Disk

Tape

World-Wide

Data Distribution

POSIX

NFS

Hadoop/Spark

Object

SMB

iSCSI

pNFS

Spectrum Scale

• Single name space no matter where data resides
• Data in best location (performance & cost), at the right time
• Multi-tenancy
• All in software

*Future Capability

Key Software Value Adds

• Eliminate data migration through native

File and Object integration

• POSIX/NFS/SMB/S3/Swift

• High performance and scalability

• Authentication integration (LDAP/AD)

• Data protection

• Snapshots, Backup,

Disaster Recovery

• Encryption

• Compression

• Integrated or software-only solutions

• External storage integration

• Integration of Tape or Deduplication

appliance such as TSM, LTFS, ProtecTier

• Optical storage integration on roadmap

SSD Fast
Disk

Slow
Disk

Tape

Spectrum Scale Object

