

IBM DCS Storage – the Ideal Building Block for Flexible Spectrum Scale

Kumaran Rajaram, Staff Engineer IBM, Storage Benchmarking Team

Dexter Pham, Consulting Engineer
DCS Technical Specialists

Matt Forney, Research and Technology Director
Ennovar, Institute of Emerging Technologies and Market Solutions Wichita State University

Ennovar Assets, Benchmarks, Best Practices, and Assistance

Ennovar Spectrum Scale Solutions Center

Institute of Emerging Technologies and Marketing Solutions at Wichita State University

- Hands-on student applied learning with Spectrum Scale
- Spectrum Scale and Spectrum Archive (SME) subject matter experts
- Consulting—including benchmarks, best practices and technical marketing services.
- Remote Customer Demo Online Access
 - Customer defined use case and application environments.
 - Online Spectrum Scale Solutions Lab Portal provides VPN customer access on Ennovar's high-performance FSS configurations.

Team and Collaboration

Olga Yiparaki, Chief Engineer, Storage Performance Vernon Miller, Spectrum Scale performance Jay Vaddi, Spectrum Scale Performance Kumaran "Kums" Rajaram, Spectrum Scale Performance

Matt Forney, Research and Technology Director Alan Snyder, Technical Marketing Director Dexter Pham, Consulting Engineer Tom Rose, Technical Manager Joel Hatcher, Technical Lead

Flexible Spectrum Scale Solution with DCS3860 storage

- Focused on IBM Spectrum Scale with DCS3860 Gen 2 storage systems
 - Develop storage reference architectures (building blocks)
 - High-performance (today's update)
 - Balanced-workload (future work)
 - High-capacity (future work)
 - Develop and run benchmarks for each architectural model using
 - IBM DCS3860 Gen 2 storage systems
 - Intel-based NSD servers
 - Develop Implementation Guide
 - Define modular building blocks for I/O and capacity expansion
 - Hardware selection criteria and tuning guidelines
 - Detailed system build instructions
 - Benchmark scripts and test results on reference models

IBM DCS3860

Spectrum Scale: Unleash new storage economics on a global scale

Three Options for Licensing Spectrum Scale

IBM's Elastic Storage Server (ESS)

An Integrated IBM Offering

Spectrum Scale Software

Customer's Choice of Infrastructure

Flexible Spectrum Scale (FSS)

IBM Spectrum Scale Software on flexible hardware Software + x86/Power + storage

IBM Spectrum Scale on Cloud
On IBM SoftLayer Cloud

Cloud Service

Ready to use, Spectrum Scale on the Cloud

Flexible Spectrum Scale Storage Building Block based on DCS3860

	High-Performance Building Block
Controllers/ NSD Servers	Up to 4 single-proc Intel E5-1650 v 3 6-core "Haswell"
Storage Subsystem	1 6 systems, DCS3860-G2 model 1 Controller Enclosure per system 60 6TB NL-SAS per system, 6 RAID6 arrays of 10 drives each (8 + P + Q) 12Gb SAS connections (max. 360 disks, 1.7 PB usable capacity)

- Rack space 30U (free space to add SSD enclosures)
- Storage enclosure 4U 60 x 3.5" drive slots, 6 x 10 drive RAID6 = approx. 288TB usable capacity
- 1U Mellanox top-of-rack IB switch + 1U 1Gb Ethernet management switch
- DCS3860-G2 allows up to 5 expansion enclosures

Building Blocks – Intel x86 NSD Servers – 1 to 6 storage systems

Performance Updates

Storage	1 x DCS3860	6 x DCS3860	comments
NSD clients	10 total: 6 x Dual Socket Intel Xeon CPU E6540 @ 2.00GHz + 4 x Dual Socket Intel Xeon CPU E5- 2650 v4 @ 2.20GHz	10 total: 6 x Dual Socket Intel Xeon CPU E6540 @ 2.00GHz + 4 x Dual Socket Intel Xeon CPU E5-2650 v4 @ 2.20GHz	
NSD servers	2 single-proc Intel E5-1650, v 3 6-core "Haswell"	4 single-proc Intel E5-1650, v 3 6-core "Haswell"	
Capacity	288 TB	1.7 PB	Net Capacity after RAID6
Drives	60 NL SAS x 6 TB each	6 x 60 NL SAS x 6 TB each	
Read GB/s	8.6 GB/s	43 GB/s	 Read BW can scale up to 52 GB/s but limited by IB network Measured with both IOR and GPFSperf, same performance
Write GB/s	4.2 GB/s	25 GB/s	 Linear scaling, sustainable bandwidth Measured with both IOR and GPFSperf, same performance
70/30 Read/Write GB/s	5.9 GB/s (sequential) 6.9 GB/s (random)	34 GB/s (sequential) 40 GB/s (random)	Linear scaling, sustainable bandwidth

Performance measured with IOR and GPFSperf. Note that performance depends on client configuration and good Interconnect and can vary between environments. Performance is not guaranteed; rather it is a demonstration of the technical capabilities of this cluster under good conditions. See backup pages with settings and configuration details.

Summary

- Sustainable, high performance is achieved with flexible Spectrum Scale
- Performance scalability: linear scaling as storage expands to grow capacity, while maintaining a single file system
- Completed FSS with DCS3860 Implementation Guide

Next Steps

- Performance using different building blocks:
 'balanced workload' and 'high-capacity' building blocks
- Performance with SPEC SFS and other benchmarks
- Spectrum Scale Solutions Center Lab Portal

Ennovar IBM Spectrum Scale Solutions Center Lab Portal

- Provides Spectrum Scale partners and end-users an opportunity for hands on experience performing upgrade, interop and benchmark testing in a lab environment
 - Eliminates risk to production environments
 - Spectrum Scale and SAN/NAS SMEs on site
 - Assist or perform testing
 - Provide or configure hardware changes and/or customizations
 - Provide Spectrum Scale and SAN/NAS expertise
 - Lab available 24x7 with personnel onsite between 8:00 and 5:00 US Central (available after hours/weekends via pre-arranged agreements)
- Go to https://ennovar-hpc.herokuapp.com/
 - Fill out the online registration form to request a portal account
 - Download the VPN client for accessing the lab
 - Ennovar will automatically receive an email once you register and will contact you via email or phone in order to provide you the necessary credentials for logging in to the lab VPN
- Contact the Director Matt Forney or SRA Lab Manager Tom Rose and a conference call will be arranged to discuss access and/or provide assistance
 - Email: Matt.Forney@Wichita.edu
 - Email: Thomas.Rose@Wichita.edu

Backup and References

Configuration with Spectrum Scale 4.2.0.3

mmlsconfig

maxMBpS 14336

pagepoolMaxPhysMemPct 75

nsdbufspace 70

workerThreads 1024

scatterBufferSize 256k

verbsRdma enable

verbsRdmaSend yes

[nsds]
nsdMultiQueueType 1
nsdMaxWorkerThreads 1k
nsdMinWorkerThreads 16
maxblocksize 16m
nsdMultiQueue 64
nsdThreadsPerQueue 12
nsdThreadsPerDisk 12
pagepool 48g

[clients] pagepool 8G

GPFS Version

=== mmdiag: version === Current GPFS build: "4.2.0.3 ". Built on May 4 2016 at 09:29:46

mmlscluster

GPFS cluster information

compute6 gpfs

lenovo1 gpfs

lenovo2 gpfs

lenovo3 gpfs

lenovo4 gpfs

10

12 13

GPFS cluster name: ennovar1.sgi1_gpfs
GPFS cluster id: 13168939376820416695
GPFS UID domain: ennovar1.sgi1_gpfs

Remote shell command: /usr/bin/ssh Remote file copy command: /usr/bin/scp

Repository type: CCR

Node	Daemon node name	IP address	Admin node name	Designation
1	sgi1_gpfs	192.168.212.20	sgi1_gpfs	quorum-manager
2	sgi2_gpfs	192.168.212.21	sgi2_gpfs	quorum-manager
3	sgi3_gpfs	192.168.212.22	sgi3_gpfs	quorum-manager
4	sgi4_gpfs	192.168.212.23	sgi4_gpfs	quorum-manager
5	compute1_gpfs	192.168.212.10	compute1_gpfs	quorum
6	compute2_gpfs	192.168.212.11	compute2_gpfs	
7	compute3_gpfs	192.168.212.12	compute3_gpfs	
8	compute4_gpfs	192.168.212.13	compute4_gpfs	
9	compute5 gpfs	192,168,212,14	compute5 gpfs	

192.168.212.15 compute6 gpfs

192.168.212.24 lenovo1 gpfs

192.168.212.25 lenovo2 gpfs

192.168.212.26 lenovo3 gpfs

192.168.212.27 lenovo4 gpfs

mmlsfs

flag	value	description
-f	524288	Minimum fragment size in bytes
-i	4096	Inode size in bytes
-I	32768	Indirect block size in bytes
- m	1	Default number of metadata replicas
- M	2	Maximum number of metadata replicas
-r	1	Default number of data replicas
- R	2	Maximum number of data replicas
-j	cluster	Block allocation type
-D	nfs4	File locking semantics in effect
-k	all	ACL semantics in effect
-n	14	Estimated number of nodes that will mount file system
-B	16777216	Block size
-Q	none	Quotas accounting enabled
	none	Quotas enforced
	none	Default quotas enabled
perfileset-quota	No	Per-fileset quota enforcement
filesetdf	No	Fileset df enabled?
-V	15.01 (4.2.0.0)	File system version
- Z	No	Is DMAPI enabled?
-L	16777216	Logfile size
-E	Yes	Exact mtime mount option
-S	No	Suppress atime mount option
- K	whenpossible	Strict replica allocation option
fastea	Yes	Fast external attributes enabled?
encryption	No	Encryption enabled?
	134217728	Maximum number of inodes
log-replicas	0	Number of log replicas
- 0	Yes	is4KAligned?
· F · · · · · · · · · · ·	Yes	rapidRepair enabled?
write-cache-thre	shold 0	HAWC Threshold (max 65536)

mmlsnsd

File system	Disk name	NSD servers
gpfs1	S1V00	sgi1_gpfs,sgi2_gpfs
gpfs1	S1V01	sgi2_gpfs,sgi1_gpfs
gpfs1	S1V02	sgi2_gpfs,sgi1_gpfs
gpfs1	S1V03	sgi1_gpfs,sgi2_gpfs
gpfs1	S1V04	sgi1_gpfs,sgi2_gpfs
gpfs1	S1V05	sgi2_gpfs,sgi1_gpfs
gpfs1	S2V00	sgi2_gpfs,sgi1_gpfs
gpfs1	S2V01	sgi1_gpfs,sgi2_gpfs
gpfs1	S2V02	sgi1_gpfs,sgi2_gpfs
gpfs1	S2V03	sgi2_gpfs,sgi1_gpfs
gpfs1	S2V04	sgi2_gpfs,sgi1_gpfs
gpfs1	S2V05	sgi1_gpfs,sgi2_gpfs
gpfs1	S3V00	sgi3_gpfs,sgi4_gpfs
gpfs1	S3V01	sgi4_gpfs,sgi3_gpfs
gpfs1	S3V02	sgi4_gpfs,sgi3_gpfs
gpfs1	S3V03	sgi3_gpfs,sgi4_gpfs
gpfs1	S3V04	sgi3_gpfs,sgi4_gpfs
gpfs1	S3V05	sgi4_gpfs,sgi3_gpfs
gpfs1	S4V00	sgi4_gpfs,sgi3_gpfs
gpfs1	S4V01	sgi3_gpfs,sgi4_gpfs
gpfs1	S4V02	sgi3_gpfs,sgi4_gpfs
gpfs1	S4V03	sgi4_gpfs,sgi3_gpfs
gpfs1	S4V04	sgi4_gpfs,sgi3_gpfs
gpfs1	S4V05	sgi3_gpfs,sgi4_gpfs
gpfs1	S5V00	sgi1_gpfs,sgi2_gpfs
gpfs1	S5V01	sgi2_gpfs,sgi1_gpfs
gpfs1	S5V02	sgi2_gpfs,sgi1_gpfs
gpfs1	S5V03	sgi1_gpfs,sgi2_gpfs
gpfs1	S5V04	sgi1_gpfs,sgi2_gpfs
gpfs1	S5V05	sgi2_gpfs,sgi1_gpfs
gpfs1	S6V00	sgi4_gpfs,sgi3_gpfs
gpfs1	S6V01	sgi3_gpfs,sgi4_gpfs
gpfs1	S6V02	sgi3_gpfs,sgi4_gpfs
gpfs1	S6V03	sgi4_gpfs,sgi3_gpfs
gpfs1	S6V04	sgi4_gpfs,sgi3_gpfs
gpfs1	S6V05	sgi3_gpfs,sgi4_gpfs

NSD clients & servers

	Spectrum Scale NSD Client Nodes	Spectrum Scale NSD Server Nodes
Operating System	CentOS v7.2	CentOS v 7.2
Processing Elements	6 x Dual Socket Intel Xeon CPU E6540 @ 2.00GHz	4 x Single Socket Intel Xeon CPU E5- 1650 v3 @ 3.50GHz
	4 x Dual Socket Intel Xeon CPU E5-2650 v4 @ 2.20GHz	
RAM Size	128 GiB	64 GiB

DSC3860 Storage Configuration

Controller Firmware Version: 08.20.21.00

• RAID Level: 6

Segment Size: 512 KB

Read Cache: Enabled

Write Cache: Enabled

Write cache without batteries: Disabled

Write cache with mirroring: Enabled

• Flush write cache after (in seconds): 10.00

• Dynamic cache read prefetch: Disabled

Six Storage Systems

IOR Read Test

```
Run began: Tue Nov 8 23:06:59 2016
Command line used: /usr/local/bin/IOR -i 10 -d 5 -r -eg -E -F -k -t 1M -b 32g -o /gpfs1/gpfsperf/seq
Machine: Linux compute1
Summary:
                          = POSIX
        api
        test filename
                          = /gpfs1/gpfsperf/seq
                          = file-per-process
        access
        ordering in a file = sequential offsets
        ordering inter file= no tasks offsets
        clients
                          = 500 (50 per node)
        repetitions
                          = 10
        xfersize
                          = 1 MiB
        blocksize
                          = 32 GiB
       aggregate filesize = 16000 GiB
Operation Max (MiB) Min (MiB) Mean (MiB)
                                             Std Dev Max (OPs)
                                                                 Min (OPs) Mean (OPs)
                                                                                         Std Dev Mean (s)
                                  41804.58
                                                                              41804.58
                                                                                          228.13 391.93047
read
           42246.53
                      41456.85
                                              228.13
                                                       42246.53
                                                                  41456.85
                                                                                                             EXCEL
Max Read: 42246.53 MiB/sec (44298.70 MB/sec)
Run finished: Wed Nov 9 00:13:06 2016
```


Six Storage Systems

Run finished: Wed Nov 9 03:08:49 2016

IOR Write Test

```
Run began: Wed Nov 9 03:03:28 2016
Command line used: /usr/local/bin/IOR -i 10 -d 5 -w -eg -E -F -k -t 1M -b 32g -o /gpfs1/gpfsperf/seq
Machine: Linux compute1
Summary:
                          = POSIX
        api
        test filename
                          = /gpfs1/gpfsperf/seq
                          = file-per-process
        access
       ordering in a file = sequential offsets
        ordering inter file= no tasks offsets
                          = 20 (2 per node)
        clients
        repetitions
                          = 10
        xfersize
                          = 1 MiB
        blocksize
                          = 32 GiB
        aggregate filesize = 640 GiB
Operation Max (MiB) Min (MiB) Mean (MiB)
                                                                 Min (OPs) Mean (OPs)
                                             Std Dev Max (OPs)
                                                                                        Std Dev Mean (s)
write
           24780.20 23755.76
                                  24231.24
                                              306.19 24780.20
                                                                  23755.76
                                                                             24231.24
                                                                                         306.19 27.05041
                                                                                                            EXCEL
Max Write: 24780.20 MiB/sec (25983.92 MB/sec)
```


One Storage System

IOR Write Test

```
Run began: Wed Nov 9 22:31:42 2016
Command line used: /usr/local/bin/IOR -i 10 -d 5 -w -eg -E -F -k -t 1M -b 32g -o /gpfs1/gpfsperf/seq
Machine: Linux compute1
Summary:
                          = POSIX
        api
                          = /gpfs1/gpfsperf/seq
       test filename
                          = file-per-process
        access
        ordering in a file = sequential offsets
        ordering inter file= no tasks offsets
        clients
                          = 10 (1 per node)
       repetitions
                          = 10
       xfersize
                          = 1 MiB
       blocksize
                          = 32 GiB
        aggregate filesize = 320 GiB
Operation Max (MiB) Min (MiB) Mean (MiB)
                                             Std Dev Max (OPs)
                                                                 Min (OPs)
                                                                            Mean (OPs)
                                                                                         Std Dev Mean (s)
                                                                   3931.79
write
            4009.32
                        3931.79
                                    3976.78
                                               22.79
                                                        4009.32
                                                                                3976.78
                                                                                            22.79
                                                                                                  82.40101
                                                                                                              EXCEL
```

Max Write: 4009.32 MiB/sec (4204.08 MB/sec)

Run finished: Wed Nov 9 22:46:15 2016

One Storage System

IOR Read Test

```
Run began: Wed Nov 9 20:21:26 2016
Command line used: /usr/local/bin/IOR -i 10 -d 5 -r -eg -E -F -k -t 1M -b 32g -o /gpfs1/gpfsperf/seq
Machine: Linux compute1
Summary:
                          = POSIX
       api
       test filename
                          = /gpfs1/gpfsperf/seq
       access
                          = file-per-process
       ordering in a file = sequential offsets
       ordering inter file= no tasks offsets
                          = 10 (1 per node)
       clients
        repetitions
                          = 10
       xfersize
                          = 1 MiB
       blocksize
                          = 32 GiB
       aggregate filesize = 320 GiB
                                                                 Min (OPs)
Operation Max (MiB) Min (MiB) Mean (MiB)
                                             Std Dev Max (OPs)
                                                                            Mean (OPs)
                                                                                         Std Dev Mean (s)
                                                        8259.74
                                                                   8055.46
                                                                               8194.47
read
            8259.74
                       8055.46
                                   8194.47
                                               57.18
                                                                                           57.18 39.98991
                                                                                                             EXCEL
Max Read: 8259.74 MiB/sec (8660.97 MB/sec)
Run finished: Wed Nov 9 20:28:56 2016
```

